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Secondary flow in an elastico-viscous fluid caused 
by rotational oscillations of a sphere. Part 1 

By K. R. FRATER 
Department of Applied Mathematics, University Colrege of Swansea 

(Received 17 April 1963) 

When the angular amplitude of oscillation of a sphere in an infinite mass of 
elastico-viscous fluid is fairly small, so that velocity and stress components may 
be expanded as power series in this amplitude, the purely periodic primary 
motion has associated with it a secondary flow which has a steady component 
as well as a component of double the primary frequency. An expression for the 
stream function of the steady secondary flow is obtained for all possible fre- 
quencies and the results are illustrated by considering in detail a particular fluid. 
It is shown that the streamline projections on a plane containing the axis of 
rotation are strongly dependent on the parameters measuring the elasticity of 
the fluid and on the frequency. The circulatory secondary flow can be in the 
opposite sense to that in a Newtonian fluid, in either the whole or part of the 
elastico-viscous fluid. 

1. Introduction 
Because of the non-linear nature of the equations of state of even the simplest 

elastico-viscous fluid, it  is virtually impossible except when the fluid undergoes 
steady simple shearing, to obtain exact solutions of the equations of motion, and 
one must resort to approximate methods. In  almost all published investigations 
to date the flow has been considered slow and the parameters measuring elastic 
properties of the fluid have been assumed small. As some of these materials are 
of great industrial importance it would be useful to study their flow under less 
restrictive conditions. Some progress can be made by considering motions in 
which the fluid is subjected to oscillations that are small, but not infinitesimal. 
Then it is not necessary to introduce restrictions on the magnitude of the 
Reynolds number describing the flow or on those of the parameters that measure 
the elasticity of the fluid. 

A number of authors (for example, Burgers 1948; Oldroyd 1951; Walters 1960) 
have considered oscillatory flow of elastico-viscous fluids, but in each case the 
amplitude of oscillation was taken to be so small that all second-degree terms in 
the equations of motion could be neglected. In  a previous paper (Prater 1964), 
the flow of a type of elastico-viscous fluid between torsionally oscillating disks 
was considered. It was found that a purely oscillatory motion of the disks 
produces a steady secondary flow, which for a certain critical range of frequencies 
shows a remarkable departure from the corresponding flow encountered in a 
Newtonian fluid. The rotational nature of the motion during each half-cycle 
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gives rise to a normal-stress effect, comparable with the Weissenberg effect in 
steady flows. 

The present paper treats the flow of an infinite mass of elastico-viscous fluid 
due to the oscillatory motion of a solid sphere about a fixed diameter. The 
corresponding flow in a Newtonian fluid has been given by Carrier & Di Prima 
(1956). These authors found that the secondary motion induced is such that 
fluid is repelled from the sphere at the equator and sucked in axially at the 
poles-a circulatory motion in planes containing the axis of rotation. The main 
purpose of their paper was to compute the correction to the oscillating viscous 
torque on the sphere when second-order terms are taken into account. We shall 
be principally concerned with the effect of the elasticity of the fluid on the nature 
of the secondary flow. 

The idealized incompressible elastico-viscous fluid considered in the present 
paper has the following equations of state, relating the stress tensor Xi, and the 
rate-of-strain tensor E,k = *( U,, , + U,, k ) :  

fl,, = %t- f 'g ik ,  (1) 

(2) 
Here U, denotes the velocity vector, gjk the metric tensor, 4, the part of the 
stress tensor related to change of shape of a material element, and P an isotropic 
pressure; yo is a constant having the dimensions of viscosity (which can be 
identified with the limiting viscosity at vanishingly small constant rate of shear) 
and A,, A,, po  are constants having the dimension of time. The derivative b/bT 
is the convected time derivative (Oldroyd 1950) defined thus: if Bik is any 
contravarian t tensor, 

Pik + Al(bPik/bT) +poPjE," = 2yo[Eik + A,(bEi"/bT)]. 

bB'k/bT aBi'/aT+ UiB",*+Q::mBm'++~mBBim-E~Bmk-Ek nt B'm, 
where a,, = +( U,, - U,, ,) is the vorticity tensor and a suffix following a comma 
denotes a covariant derivative; T is the time. 

It has been shown (Oldroyd 1958) that the class of idealized fluids defined by 
equations (1) and (2) exhibit qualitatively most of the dbserved non-Newtonian 
features of some polymer solutions and other elastico-viscous fluids, provided the 
constants yo, A,, A, and po are chosen so that 

q0 > 0, A, > A, 2 $A, > 0, po > 0. 

2. Equations of motion 
We consider a solid sphere immersed in an infinite mass of elastico-viscous 

fluid, characterized by the set of equations (1) and (2), and suppose the sphere to 
be represented by R = a, in a spherical polar co-ordinate system (R, 8, #) with 
origin at the centre of the sphere. The axis 8 = 0 is taken as the axis of symmetry 
for the whole motion. We shall suppose that the physical components of the 
velocity vector referred to these co-ordinates are U ,  V ,  W.  If the sphere R = a 
performs oscillations about the axis 8 = 0 with frequency 4277 and angular 
amplitude Q, the boundary conditions are 

(3) 
U = 0, V =  0, W =  an+sinOei"T on R =  a, 
u=o,  V = O ,  w = o  as R-too. 
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The convention is adopted that real parts are to be understood whenever complex 
expressions are quoted for physical quantities. 

Equations (1) and (2), together with the usual equations of motion and con- 
tinuity, are first reduced to non-dimensional form by the following substitutions 

R = ar, 

U = anu, V = anv, W = anow, 

qik) = ny, p(ik), P - pRg COB 0 = pa2n2p, 

T = n-It, 

A, = CAI, Po = €Al, 
where P(ik) denotes the physical components of the partial stress tensor and 
cr, 6 are clearly two positive dimensionless physical constants of the material. 
For convenience, we shall from this point represent physical components of the 
partial stress tensor by pW, pr+ etc., omitting the brackets around suffixes. We 
then obtain the following set of ten equations relating six components of partial 
stress, three components of velocity and an isotropic pressure: 

+vsin28-- rae a (- rsin2B + ~ ) - ~ ~ ( r ~ ( ~ ) ) 2 - ~ e ( s i n e ~ ( ~ ~ ) ~ ]  rsin38 , 

(7) 
24-2 



where R, = p a 2 / %  is a Reynolds number for the flow, pjj = pw +pee +po+, and 
AS = h,n can be thought of as a dimensionless measure of the ‘memory’ of the 
elastico-viscous fluid, based on the use of the period of oscillation as the natural 
unit of time. The associated boundary conditions are 

u = 0, v = 0, w = sinee” on r = 1, 

u = o ,  v = o ,  w = o  as r+w. 
(14) 
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3. Solution of the equations 
In  order to obtain an approximate solution of the above equations, it is now 

assumed that Q is fairly small, so that we may expand certain quantities as 
power series in Q. Then from the form of the equations (a)-( 13) and the boundary 
conditions (14), we can write 

w = f ( r )  sin 8 eil + Qn2f,(r, 8, t )  + . . . , 
U. = Q2g(r, 8, t )  + ..., v = Q2h(r, 8, t )  + ..., 

pcr = QF(r) sin 8 eit + Q3F,(r, 6, t )  + . . ., 
p ,  = Q2G(r, 8, t )  + .. ., pss = Q2H(r, 8, t )  + .. ., 

Q2K(r, 8, t )  + . .., pro = Q2L(r, 8, t )  + . . ., pcc = 

= Q3M(r, 8, t )  + .. ., p = Q2N(r, 8, t )  + . ... 
If these expressions are substituted in equations (4)-(13) and the boundary 
conditions (la), and coefficients of Q, Q2, etc., are equated, the following system 
of linear partial differential equations is obtained: 

( I + i S ) F  = 

cote r 1 i a  ah sin28 
at r ra6 R, r sin 8 a8 (r3L)+-- (BsinO)------K , aN 1 l a  cotB(feit)2 = --+- --__ 

(21) 

(23) 
8 a 
ar ae - (r2g sin 8) + - (rh sin 8) = 0. 

The boundary conditions become 

(24) 
f = 1 ,  g = O ,  h=O on r = 1 ,  

f = O ,  g = O ,  h=O as r-too. 
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The  primary motion 
Eliminating F from equations (18) and (22)  gives the following ordinary 
differential equation for f :  

r2f” + 2rf - (a2Ro + 2 )  f = 0,  (25)  

where a2 = i{( 1 + is)/( 1 +id)}, (26) 

and a prime denotes differentiation with respect to r. The solution of equation (25) 
satisfying the boundary conditions (24) is 

The corresponding expression for F(r)  is 

We suppose the real and imaginary parts of a@ are b and q, so that f ( r )  and F(r )  
can be written in the forms 

(3qr+2bqr2),+(3+ 3br+ 
r6( 1 + 2b + b2 + q2) 

P(r )  = -~ 
b2 + q2 

(1 + b)  (3qr+ 2bqr2) -b{3+ 3br+ (b 2- q ) T  } 
(1 + b) ( 3  + 3br + (b2-  q2)r2)+b(3qr + 2bqr2) 2 ,  . (33)  q2(r) = tan-, 

The  secondary motion 
From the fact that, if z, and z2 are any two complex numbers,* 

Re (2,) Re (x,) = *Re (z,X,) ++Re (z1z2), 

we see that the quadratic non-homogeneous terms in equations (17), (20)  and (21)  
will consist of a time-independent term plus a term proportional to exp (2it) .  
Hence we will expect g, h, G, H ,  K and N to be given by 

g = g, + g2 e2it, 

H = H, + H, e2it, 

h = h, + h2 e2it, 

K = K ,  + K ,  e2it, 

* I denotes the complex conjugate of 2 .  

G = G, + G, e2it, 

N = N, + N, e2it. 
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Substituting these expressions into equations (15)-(23) and equating time- 
independent parts, we*obtain the following system of linear partial differential 
equations : 

(34) G, = 2(agl/ar), 

Kl = 2 ~ + n ~ 8 ) + S s i n 2 8 { r $ ( ~ ) F - c r 2 [ ; i ; ( ; ) ; t ; ( r ) ] ) '  d f  d f  (36) 

2G,)+-- i a  (L ,  sin8)- H1+K1), ~ 

r sin 8 a0 r (38) 

r I -sin28cotB- " = --+- (' a(r3L,)+--(H,sinB)--K, i a  , 2r ra8 R, 3- r ar r sin 8 a8 

(35) 

(37) 

a(r2g, sin 8)/ar + a(rh, sin 8)/a8 = 0. 

The associated boundary conditions are 

g1 = 0, h, = 0 on r = 1, 

g, = 0, h1 = 0 as r+m. 

Prom equation (40) i t  is seen that a stream function $(r, 8) exists such that 

Eliminating N, from equations (38) and (39) and substituting for G,, L,, H, and 
K,, we obtain the following equation for 4 

A2$ = R,c(r) sin 28, (43) 

where A Y E -  1 ~ az(ry) 1 a [ 1 a(ysinB)]) 
r ar2 r a8 sin8 28 ( +-- - 9 

The form of equation (43) suggests that $ will be given by 

$(r, 8) = Y ( r )  sin 28. (44) 

Substitution of this expression into equation (43) gives the following linear 
ordinary differential equation for Y ( r )  : 

'43" = ROcP), (45) 

where 
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This equation must be solved with the boundary conditions 

(i) Y = 0,  Y'=O on r =  1, 

(ii) Y = 0, Y'= 0 as r - f c o .  

The general solution of equation (45)  may be obtained by the usual method of 
variation of parameters. After some straightforward (but rather laborious) 
algebra we find 

(47) 
where C,, C2, C3 and C4 are four arbitrary constants. 

Substituting the values off and P ,  etc., into the expression for E(r) we have 

Substituting this value of [ ( r )  into equation (47) ,  we find that the solution of 
equation (45) satisfying the boundary conditions (46)  is given by 

1 0 + 2 0 b + - ( 5 b 2 + 1 4 b 2 q 2 + q 4 ) ] - ~ 2 ( 5 b 2 + q 2 )  1 1 
40 b2 

1 1 1 b b2 we-ks 
( Sob2 40b 40 20 10 1 1  sdS]* +yq2 - - - ~  +- - - +- ek 
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4. Discussion of results 
As equation (48) stands, i t  is too complicated for any general deductions to 

be made about the behaviour of the flow. It is, however, possible to simplify 
this equation considerably if we make the assumption that the Reynolds number 
R, is large. This restriction will not be serious because, if there are any effects 
due to the elasticity of the fluid, these are bound to be present at fairly large 
Reynolds number. For large values of R,, we may use the asymptotic expansion 

for C" e-ks cis, as follows: 

Substitution of this expression into equation (48) gives the following asymptotic 
form for Y ( r )  : 

(49) 
where Bb and Bi are the asymptotic forms of Ba and B,, given by 

1 1 
10 + 2Ob + - (5b4 + 14b2q2 + p4)] - m2 (5b2 + p2) 

40 b2 

1 1 5 15 105 105 945 +---+--- 
+yq2(m-gbg 16b4 16b5 32bs 8b7 

3 3 9  +--- 
20b2 40b3 16b4 

1 

and B; and Bi are given by 

(b2+q2){2(b2+q2)p+ I}. 
5 B' - _ _ _  

- 160b3 

In  these expressions we have neglected terms of order b-7 compared with unity. 
Remembering that b = (a( @ cosx, and 1.1 2 1, this is equivalent to taking 

For the purpose of numerical illustration, we now focus attention on one 
particular fluid (i.e. a fluid with given values of qo, p ,  A, and A,) and study the 
flow for different values of the frequency n. The two parameters R, and S are 
then each proportional to the frequency. The dimensionless parameter 
cr ( =  A,/A,) is chosen to have the value &, and R,/S (=  pa2/r,h,) the value 50. 
The calculations have been carried out with the aid of an IBM 1620 computer. 

It is found that the behaviour of the secondary flow is strongly dependent on 
the frequency. We illustrate this dependence by constructing the projections of 

R891. 
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the streamlines of the secondary floy on any plane containing the axis of rotation. 
The projection of any streamline is represented by r$ sin 6 = constant, i.e. 

rY(r)sin8sin26 = constant. (50) 

Quite different forms of projection are obtained for values of R, lying in the 
approximate ranges: (i) 0 < R, < 36, (ii) 36 < R, < 50, (iii) 50 < R, < 244, 
(iv) 244 < R, < 245, (v) 245 < R,. The projections of the streamlines (which are 
not plotted at equally spaced values of the stream function) corresponding to 
each of these ranges of R, are now discussed. We need only consider one quadrant 
0 < 8 < &r because of symmetry. 

e = o  

I 

6 = &  
FIGTJFLE 1. The projections of typical streamlines on a plane containing the 

axis of rotation when u = &, R, = 25, S = 0.5. 

Case (i): 0 < R, < 36 

In  this case, i t  is found that the function rY'(r) is negative for all values of r ,  
except r = 1 and r = coy where it vanishes. The flow pattern is then similar to 
that for a Newtonian fluid (corresponding to CT = 1); the fluid recedes from the 
sphere at the equator and approaches it at the poles. The projections of stream- 
lines when R, = 25 are shown in figure 1. 

Case (9%): 36 < R, < 50 

In this case, it is found that the function rY ( r )  changes sign for a finite value 
r' of r ,  defined by the equation r 'Y(r') = 0 (different values of r' arising for 
different values of R,). Inside the sphere r = r' ,  the projection curves are closed 
and fluid recedes from the sphere at the equator and approaches it again a t  the 
poles. Outside this sphere the curves are open and fluid recedes from the sphere 
at the poles and approaches i t  at the equator. 

On the spherical surface r = r', the radial velocity vanishes, although the 
component of velocity in the &direction does not. Hence i t  follows that particles 
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of fluid which are initially inside (or outside) this sphere will remain so during 
the motion. The projections of streamlines in the cases R, = 37 and 38 are shown 
in figures 2 (a )  and (b ) .  

e=o 

te=gn 

( b )  
FIGURE 2. The projections of typical streamlines on a plane containing the axis of 

rotation when u = 4, (a)  R, = 37, S = 0.74, ( b )  R, = 38, S = 0.76. 

Case (iii): 50 < R, < 244 
In  this case, it is found that the function r Y ( r )  is positive for all values of r 

lying in the range 0 < r < co. The direction of flow is reversed compared with 
that in case (i); the fluid recedes from the sphere at the poles and approaches it 
at the equator. The projections of the streamlines for R, = 100 are shown in 
figure 3. 
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Case (iv): 244 < R, < 245 

The projections of the streamlines for R, = 244.1 are shown in figure 4. As in 
case (ii), i t  is found that the function rY(r)  changes sign for a finite value r" of r 
(depending on the Reynolds number), given by r"Y(r") = 0. As before, we find 
that the projections are closed curves inside r = r", but now fluid recedes from 
the sphere at the poles and approaches it again at the equator. Outside the 
surface r = r", the projections of streamlines are open and fluid recedes from the 
sphere at the equator and approaches i t  at the poles. 

8 = 0  

'8=$n 
FIGURE 3. The projections of typical streamlines on a plane containing the 

axis of rotation when IS = $, R,, = 100, S = 2. 

Case (v): 245 < B, 
In  this case, the function r$(r) is again negative for all values of r lying in the 

range 0 < r < co. The flow pattern is very similar to that in case (i). 
We conclude that, for r~ given in a certain range (which includes CT = 4 when 

pa2/(n,h,) = 50), there is a critical range of frequency in which the direction of 
the steady secondary flow is reversed compared with that in a Newtonian fluid. 
The predicted reversal phenomenon may be thought of as analogous to the 
Weissenberg effect in certain steady flows and it clearly arises because of the 
rotational nature of the motion of the sphere. The extra tension along the stream- 
lines induced by shearing remains non-negative throughout each period of 
oscillation and has the effect of squeezing the fluid in certain regions towards the 
axis of symmetry. The relative importance of this effect is very dependent on the 
frequency. It is unimportant in case (i) and becomes comparable with the 
centrifugal-force effect when the frequency lies in the range considered in 
case (ii). At first it only affects the flow at large distances from the sphere but as 
the frequency is increased we see from figures 2(a) and ( b )  that it becomes 
important everywhere except in regions close to the sphere. For higher fre- 
quencies figure 3 shows that this effect dominates the centrifugal-force effect in 
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the whole of the elastico-viscous fluid. As the frequency is increased further, 
however, the elastic effect becomes slightly less marked and at large distances 
from the sphere the centrifugal-force effect again becomes the more important. 
For yet larger frequencies the elastic effect is significant only in regions close to 
the sphere (see figure 4), and for larger still it becomes negligible everywhere. 
For further details of the dependence of the elastic effect on frequency see 
Frater (1964). 

e=o 

6= &n 
x 1  ' *  - 

FIGURE 4. The projections of typical streamlines on a plane containing the 
axis of rotation when cr = 4, Ro = 244-1, S = 4.882. 

Finally, we note that there is a certain similarity between the secondary flow 
found in the present oscillatory motion and the secondary flow caused by slow 
steady rotation of a solid sphere in an infinite mass of another type of elastico- 
viscous fluid as reported by Thomas & Walters (1964). 

The author wishes to thank Prof. J. G. Oldroyd for many valuable comments 
and suggestions and also the Department of Scientific and Industrial Research 
for the award of a Research Studentship. 

REFERENCES 

BURGERS, J. M. 1948 Proc. Kon. Ned. Akad. v. Wetensch. 51, 1211. 
CARRIER, G. F. & DI PRIMA, R. C. J .  Appl. Mech. 23, 601. 
FRATER, K. R. 1964 J .  Fluid Mech. 19, 175. 
OLDROYD, J. G. 1950 Proc. Roy. SOC. A, 200, 523. 
OLDROYD, J. G. 1951 Quart. J .  Mech. Appl. Math. 4, 271. 
OLDROYD, J. G. 1958 Proc. Roy. Soc. A, 245, 278. 
THOMAS, R. H. & WALTERS, K. 1964 Quart. J .  Mech. Appl. Math. 17, 39. 
WALTERS, K. 1960 Quart. J .  Mech. Appl. Math. 13, 444. 




